About
Kuzminki is feature-rich query builder and access library for PostgreSQL written in Scala. The approach of this library is to write SQL statements in Scala with the same structure as SQL is written. Rather than having the API natural to Scala logic, for example similar to how you work with collections, this approach seeks to make the Scala code as similar to the resulting SQL statement as possible. The goal of this approach is to make it easy to read the code and understand the resulting SQL statement. It should also make the API intuitive and easy to memorise. With this approach, it becomes practical to write quite complicated queries while still being able to understand what they do. For example subqueries and queries where column values are modified. With a different approach, the user would have to learn the libraries own unique logic. But since the logic of SQL is already known, such complexity becomes practical. With a feature-rich API, the user can find solutions and avoid writing raw SQL statements that are not checked by the compiler. The goal of this project is to offer a productive and readable API to work with Postgresql and take advantage of its many features.
Features
Kuzminki supports jsonb and array fields. When doing insert, update or delete, it offers one or more column values to be returned. It offers many options for searching and returning datetime column values. It supports subqueries, both as a condition in a search and collect values to be returned to the client. Transactions are supported, both as a way to do bulk-operations and to do multiple different operations. Data can be streamed to and from the database. Rows can be delivered to the client as, tuples, case classes or vectors. Data for insert can be a tuple or a case class. Types are checked as much as possible and wild-card types that result in unclear errors are not used. Kuzminki comes with native support for ZIO as a layer.
JSON
Postgresql comes with a jsonb field to store and query data in JSON format. Being able to take advantage of the jsonb field opens up great flexibility in organizing your data. You can work with structured and unstructured data to get the best of both worlds. Kuzminki offers extensive support for querying and updating jsonb fields. Also, Kuzminki offers the ability to return rows as JSON strings. This can be useful when, for example, you need to service JSON directly to the client you can do so without having to transform the data. You can organise how your object is formed from the table columns. For example if you need some columns to be in a nested object. If you need to create a big object from multiple tables, you can do so with a single query using subqueries. Take a look at the zio-http demo project for examples of these features.
Performance
Statements can be cached for better performance and reusability. This means that the SQL string is created only once. Execution time should be the same as running a raw statement with JDBC. All statements can be cached except for SELECT statements with optional WHERE arguments.
Only Postgres
Kuzminki supports only Postgresql. It could be adapted for use with other databases if there is interest in that. But given that it has support for many postgres specific features, support for another database would require it’s own project rather than a size fits all approach. Therefore, at the moment the goal is to deliver a good library for Postgres. That being said, there are other Postgres compatible databases that work with Kuzminki. For example CockroachDB. For those looking to scale up, it might be a good choice.
Installation
For ZIO 1
libraryDependencies += "io.github.karimagnusson" % "kuzminki-zio" % "0.9.5"
For ZIO 2
libraryDependencies += "io.github.karimagnusson" % "kuzminki-zio-2" % "0.9.5"
For EC
libraryDependencies += "io.github.karimagnusson" % "kuzminki-ec" % "0.9.5"
This documentation is for version 0.9.5. If you need an older version of this documentation:
Example
This example is for ZIO. For ZIO 2 refer to the respective github pages.
import zio._
import zio.console._
import zio.blocking._
import kuzminki.api._
object ExampleApp extends zio.App {
class Client extends Model("client") {
val id = column[Int]("id")
val username = column[String]("username")
val age = column[Int]("age")
def all = (id, username, age)
}
val client = Model.get[Client]
val job = for {
_ <- sql
.insert(client)
.cols2(t => (t.username, t.age))
.values(("Joe", 35))
.run
_ <- sql
.update(client)
.set(_.age ==> 24)
.where(_.id === 4)
.run
_ <- sql.delete(client).where(_.id === 7).run
clients <- sql
.select(client)
.cols3(_.all)
.where(_.age > 25)
.limit(5)
.run
_ <- ZIO.foreach(clients) {
case (id, username, age) =>
putStrLn(s"$id $username $age")
}
} yield ()
val dbConfig = DbConfig.forDb("company")
val dbLayer = Kuzminki.layer(dbConfig)
override def run(args: List[String]): ZIO[ZEnv, Nothing, ExitCode] = {
job.provideCustomLayer(dbLayer).exitCode
}
}
Results
// query
val stm = sql.select(client).cols3(_.all).where(_.age > 25).limit(5)
stm.run: List[T]
stm.runHead: T
stm.runHeadOpt: Option[T]
// row as type (cecked by the compiler)
stm.runType[MyType]: List[MyType]
stm.runHeadType[MyType]: MyType
stm.runHeadOptType[MyType]: Option[MyType]
// modify row
implicit val toMyType: SomeRow => MyType = row => //...
stm.runAs[MyType]: List[MyType]
stm.runHeadAs[MyType]: MyType
stm.runHeadOptAs[MyType]: Option[MyType]
// operation
val stm = sql.update(client).set(_.age ==> 24).where(_.id === 4)
stm.run: Unit
stm.runNum: Int
Config
val dbConfig = DbConfig
.forDb("{DB-NAME}")
.withMaxPoolSize(10) // default = 10
.withMinPoolSize(4) // default = 4
.withHost("{HOST}") // default = localhost
.withPort("{PORT}") // default = 5432
.withUser("{USER}}")
.withPassword("{PASSWORD}")
.withOptions(Map(...))
Layer
Create a layer to make the driver instance accessable under Has[Kuzminki]
For ZIO 1
object MyApp extends zio.App {
val job = // ...
val dbLayer = Kuzminki.layer(DbConfig.forDb("company"))
override def run(args: List[String]): ZIO[ZEnv, Nothing, ExitCode] = {
job.provideCustomLayer(dbLayer).exitCode
}
}
For ZIO 2
object MyApp extends ZIOAppDefault {
// ...
def run = job.provide(dbLayer)
}
Split connection
If you wish to have two connection pools, one for SELECT and another for INSERT, UPDATE, DELETE, you can use layerSplit
. To create an instance rather than a Layer, use createSplit
.
// for .query .queryHead .queryHeadOpt
val getConfig = DbConfig.forDb("company")
// for .exec .execNum
val setConfig = DbConfig.forDb("company")
val dbLayer = Kuzminki.layerSplit(getConfig, setConfig)
Creating a model
Column types are listed under Data types
import kuzminki.api._
import java.sql.Timestamp
class User extends Model("user_profile") {
val id = column[Int]("id")
val username = column[String]("username")
val email = column[String]("email")
val name = column[String]("name")
val age = column[Int]("age")
val gender = column[String]("gender")
val country = column[String]("country")
val city = column[String]("city")
val discount = column[Int]("discount")
val isActive = column[Boolean]("is_active")
val created = column[Timestamp]("created")
}
Model.register[User]
Custom methods
You can create custom methods to access columns that you regularly use.
class Customer extends Model("customer") {
val id = column[Int]("id")
val userId = column[Int]("user_id")
val spending = column[Int]("spending")
def all = (id, userId, spending)
}
Create a model instance
Model.register[User]
creates an instance of the model for later use and makes sure there is only one instance of the model. Model.get[User]
gets an existing instance of the model. If it does not exist, it is created.
Model.register[User]
// ...
val user = Model.get[User]
Select query
You select the columns as tuple of model columns. The query will return tuple of the column types. In this case Seq[Tuple2[Int, String]]
. If you need more than 22 columns you can use colsSeq
or colsType
. To order by ASC
rather than DESC
use orderBy(_.age.asc)
.
sql
.select(user)
.cols2(t => (
t.id,
t.username
))
.where(t => Seq(
t.gender === "f",
t.age > 25
))
.orderBy(_.age.desc)
.limit(10)
.run
SELECT
"id",
"username"
FROM "user_profile"
WHERE "gender" = 'f'
AND "age" > 25
ORDER BY "age" DESC
LIMIT 10
Row as case class
case class SimpleUser(id: Int, username: String, email: String)
sql
.select(user)
.cols3(t => (
t.id,
t.username,
t.email
))
.where(_.age < 25)
.runType[SimpleUser]
// returns List[SimpleUser]
Row as Seq
sql
.select(user)
.colsSeq(t => Seq(
t.id,
t.username,
t.email
))
.where(_.age < 25)
.run
// returns List[Vector[Any]]
Row as JSON
Get the row as a JSON string.
sql
.select(user)
.colsJson(t => Seq(
t.id,
t.username
))
.where(_.id === 5)
.runHead
// returns {"id": 5, "username": "Joe"}
Pick a name for columns and create a nested object.
.colsJson(t => Seq(
"id" -> t.id,
t.username.as("username"),
Fn.json(Seq(
t.country,
t.city
)).as("location")
))
// returns {"id": 5, "username": "Joe", "location": {"country": "IT", "city": "Rome"}}
Result with a nested array from subquery.
.colsJson(t => Seq(
t.id,
t.username,
sql
.select(travels)
.colsJson(s => Seq(
s.country,
s.year
))
.where(s.userId <=> t.id)
.orderBy(_.year.desc)
.asColumn // if you need the first object instead of an array, you can use .first after .asColumn
.as("travels")
))
Get the result as JSON, using your favorite JSON library.
// See PlayJsonLoader below
implicit val loadJson: Seq[Tuple2[String, Any]] => JsValue = data => PlayJsonLoader.load(data)
sql
.select(user)
.colsNamed(t => Seq(
t.id, // Column name is used as a key.
t.username, // If you want a different key:
t.email // ("user_id" -> t.id)
))
.where(_.age < 25)
.runAs[JsValue]
// returns List[JsValue]
Write something along these lines to use the JSON library of your choosing.
import java.util.UUID
import java.sql.Time
import java.sql.Date
import java.sql.Timestamp
import play.api.libs.json._
import kuzminki.api.Jsonb
object PlayJsonLoader {
val toJsValue: Any => JsValue = {
case v: String => JsString(v)
case v: Boolean => JsBoolean(v)
case v: Short => JsNumber(v)
case v: Int => JsNumber(v)
case v: Long => JsNumber(v)
case v: Float => JsNumber(v)
case v: Double => JsNumber(v)
case v: BigDecimal => JsNumber(v)
case v: Time => Json.toJson(v)
case v: Date => Json.toJson(v)
case v: Timestamp => Json.toJson(v)
case v: UUID => JsString(v.toString)
case v: Jsonb => Json.parse(v.value)
case v: Option[_] => v.map(toJsValue).getOrElse(JsNull)
case v: Seq[_] => JsArray(v.map(toJsValue))
case v: JsValue => v
case _ => throw new Exception("Cannot convert to JsValue")
}
def load(data: Seq[Tuple2[String, Any]]): JsValue = {
JsObject(data.map(p => (p._1, toJsValue(p._2))))
}
}
Where
Refer to Operators for a list of operators.
.where(_.id > 100)
.where(t => Seq(
t.gender === "f",
t.age > 25
))
GROUP BY / HAVING
Refer to Operators for a list of operators.
sql
.select(user)
.cols2(t => (
t.gender,
Agg.avg(t.age)
))
.where(_.age > 0)
.groupBy(_.gender)
.having(_.gender !== "")
.orderBy(t => Agg.avg(t.age).desc)
.run
SELECT "gender", avg("age")::numeric
FROM "user_profile" WHERE "age" > 0
GROUP BY "gender"
HAVING "gender" != ''
ORDER BY avg("age")::numeric ASC
)
AND / OR
import kuzminki.fn._
.where(t => Seq(
t.age > 25,
Or(
t.country === "RU",
t.country === "FR"
)
))
// WHERE "age" > 25 AND ("country" == 'RU' OR "country" == 'FR')
.where(t => Or(
And(
t.country === "RU",
t.city === "Moscow"
),
And(
t.country === "FR",
t.city === "Paris"
)
))
// WHERE ("country" == 'RU' AND "city" == 'Moscow') OR ("country" == 'FR' AND "city" == 'Paris')
Optional conditions
Optional conditions for example from http GET request.
.whereOpt(_.id > Some(100))
.whereOpt(t => Seq(
t.gender === None,
t.age > Some(25)
))
// WHERE "age" > 25
.whereOpt(t => Seq(
t.age > Some(25),
Or.opt(
t.country === Some("RU"),
t.country === Some("FR")
)
))
// WHERE "age" > 25 AND ("country" == 'RU' OR "country" == 'FR')
Distinct
sql
.select(user)
.cols2(t => (
t.username,
t.age
))
.distinct
.all
.orderBy(_.age.asc)
.run
SELECT DISTINCT "username", "age"
FROM "user_profile"
ORDER BY "age" ASC
)
sql
.select(user)
.cols2(t => (
t.username,
t.age
))
.distinctOn(_.age)
.all
.orderBy(_.age.asc)
.run
DISTINCT ON
SELECT DISTINCT ON ("age") "username", "age"
FROM "user_profile"
ORDER BY "age" ASC
)
Nested query
class Newsletter extends Model("newsletter") {
val email = column[String]("email")
val isSubscribed = column[Boolean]("is_subscribed")
}
val newsletter = Model.get[Newsletter]
sql
.select(user)
.cols1(_.username)
.where(_.email.in(
sql
.select(newsletter)
.cols1(_.email)
.where(_.isSubscribed === true)
))
.run
SELECT "username"
FROM "user_profile"
WHERE "email" = ANY(
SELECT "email"
FROM "newsletter"
WHERE "is_subscribed" = true
)
Pages
val pages = sql
.select(user)
.cols3(t => (
t.id,
t.firstName,
t.lastName)
))
.orderBy(_.id.asc)
.asPages(10) // 10 rows on page
val job = for {
next <- pages.next
page3 <- pages.page(3)
} yield (next, page3)
Cache
For increased performance and reusability queries can be cached. The SQL string will be created only once and you get the same performance as you get with raw queries.
val stm = sql
.select(user)
.cols1(_.username)
.all
.orderBy(_.age.asc)
.pickWhere2(t => (
t.country.use === Arg,
t.age.use > Arg
))
.cache
stm.run(("CN", 25))
SELECT "username"
FROM "user_profile"
WHERE "country" = 'CN'
AND "age" > 25
ORDER BY "age" ASC
Chche a query with no arguments.
val stm = sql
.select(user)
.col2(t => (
t.username,
t.created
))
.all
.orderBy(_.created.desc)
.cache
stm.run
Cache nested query.
val stm = sql
.select(user)
.cols1(_.username)
.all
.pickWhere(t = (
t.age.use > Arg,
t.email.use.in(
sql
.select(newsletter)
.cols1(_.email)
.all
.pickWhere1(_.isActive.use === Arg)
)
))
.cache
stm.run(25, true)
SELECT "username" FROM "user_profile"
WHERE "age" > 25
AND "email" = ANY(
SELECT "a"."email"
FROM "client" "a"
WHERE "a"."is_active" > true
)
Cache WHERE with HAVING
val stm = sql
.select(user)
.cols2(t => (
t.gender,
Agg.avg(t.age)
))
.all
.groupBy(_.gender)
.having(_.gender !== "")
.orderBy(t => Agg.avg(t.age).desc)
.pickWhere1(_.gender.use > Arg)
.cache
stm.run(18)
SELECT "gender", avg("age")::numeric
FROM "user_profile" WHERE "age" > 18
GROUP BY "gender"
HAVING "gender" != ''
ORDER BY avg("age")::numeric ASC
Cached with WHERE
You can use normal WHERE conditions with cached queries.
val stm = sql
.select(user)
.cols1(_.username)
.where(_.age > 25)
.orderBy(_.age.asc)
.pickWhere1(_.country.use === Arg)
.cache
stm.run("CN")
SELECT "username"
FROM "user_profile"
WHERE "age" > 25
AND "country" = 'CN'
ORDER BY "age" ASC
Select join
To do Joins you just put two model instances as arguments and the models will be accessable under a
and b
sql
.select(user, customer)
.cols3(t => (
t.a.id,
t.a.username,
t.b.spending
))
.joinOn(_.id, _.userId)
.where(t => Seq(
t.a.age > 25,
t.b.spending > 1000
))
.orderBy(_.b.spending.desc)
.limit(10)
.run
// returns List[Tuple3[Int, String, Int]]
SELECT
"a"."id",
"a"."username",
"b"."spending"
FROM "user_profile" "a"
INNER JOIN "customer" "b"
ON "a"."id" = "b"."user_id"
WHERE "a"."age" > 25
AND "b"."spending" > 1000
ORDER BY "b"."spending" DESC
LIMIT 10
Join types
The following joins are available. Refer to the section Null values to avoid problems that may come up with joins.
.joinOn(_.id, _.userId) // INNER JOIN
.innerJoinOn(_.id, _.userId) // INNER JOIN
.leftJoinOn(_.id, _.userId) // LEFT JOIN
.leftOuterJoinOn(_.id, _.userId) // LEFT OUTER JOIN
.rightJoinOn(_.id, _.userId) // RIGHT JOIN
.rightOuterJoinOn(_.id, _.userId) // RIGHT OUTER JOIN
.fullOuterJoinOn(_.id, _.userId) // FULL OUTER JOIN
.crossJoin // CROSS JOIN
Basic insert
sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.values(("bob", "bob@mail.com"))
.run
If you need to insert more than the tuple limit of 22.
sql
.insert(user)
.data(t => Seq(
t.username ==> "bob",
t.email ==> "bob@mail.com"
))
.run
For increased performance and reusability queries can be cached.
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.cache
stm.run(("bob", "bob@mail.com"))
INSERT INTO "user_profile" ("username", "email") VALUES ('bob', 'bob@mail.com')
Insert case class
case class User(name: String, email: String)
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.valuesType(User("Bob", "bob@mail.com"))
.run
// cache
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.cache
stm.run(User("Bob", "bob@mail.com"))
// stm.runListType(List(User("Bob", "bob@mail.com"), ...))
INSERT INTO "product" ("name", "price") VALUES ('Banana', 12.5)
Insert returning
sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.values(("bob", "bob@mail.com"))
.returning3(t => (
t.id,
t.username,
t.email
))
.runHead
// cache
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.returning3(t => (
t.id,
t.username,
t.email
))
.cache
stm.run(("bob", "bob@mail.com"))
INSERT INTO "user_profile"
("username", "email")
VALUES ('bob', 'bob@mail.com')
RETURNING
"id",
"username",
"email"
Insert on conflict do nothing
You can take advantage of ON CONFLICT DO NOTHING
to avoid errors on columns with UNIQUE
constraint.
sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.values(("bob", "bob@mail.com"))
.onConflictDoNothing
.run
// cache
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.onConflictDoNothing
.cache
stm.run(("bob", "bob@mail.com"))
INSERT INTO "user_profile"
("username", "email")
VALUES ('bob', 'bob@mail.com')
ON CONFLICT DO NOTHING
Upsert
The updated column has to be one of the columns you intend to insert.
sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.values(("bob", "bob@hotmail.com"))
.onConflictOnColumn(_.username)
.doUpdate(_.email) // .doNothing is also an option
.run
// cache
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.onConflictOnColumn(_.username)
.doUpdate(_.email)
.cache
stm.run(("bob", "bob@hotmail.com"))
INSERT INTO "user_profile"
("username", "email")
VALUES ('bob', 'bob@mail.com')
ON CONFLICT ("username")
DO UPDATE SET "email" = 'bob@mail.com'
Insert where not exists
If you need to avoid duplication on a column that does not have a unique constraint you can use whereNotExists
. Also, if you are makeing multible insert statements concurrently, from a stream for example, you will run into problems using onConflictDoNothing
.
sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.values(("bob", "bob@mail.com"))
.whereNotExists(_.username)
.run
// cache
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.whereNotExists(_.username)
.cache
stm.run(("bob", "bob@mail.com"))
INSERT INTO "user_profile"
("username", "email")
SELECT 'bob', 'bob@mail.com'
WHERE NOT EXISTS (
SELECT 1
FROM "user_profile"
WHERE "username" = 'bob'
)
Insert from select
sql
.insert(newsletter)
.cols1(_.email)
.fromSelect(
sql
.select(user)
.cols1(_.email)
.where(_.isActive === true)
)
.run
// cache
val stm = sql
.insert(newsletter)
.cols1(_.email)
.pickSelect(
sql
.select(user)
.cols1(_.email)
.pickWhere1(_.isActive.use === Arg)
)
.cache
stm.run(true)
INSERT INTO "newsletter" ("email")
SELECT "email"
FROM "user_profile"
WHERE "is_active" = true
Insert many
val stm = sql
.insert(user)
.cols2(t => (
t.username,
t.email
))
.cache
stm.runList(Seq(
("bob", "bob@mail.com"),
("jane", "jane@mail.com"),
("jack", "jack@mail.com")
))
Stream from the database
Streaming is done in batches. By default a batch of 100. For a larger batch use .stream(1000)
sql
.select(client)
.cols3(_.all)
.all
.orderBy(_.id.asc)
.stream // .stream(1000)
.map(makeLine)
.run(fileSink(Paths.get("clints.txt")))
Stream type
case class UserInfo(name: String, age: Int)
sql
.select(oldUser)
.cols2(t => (
t.name,
t.age
))
.all
.orderBy(_.id.asc)
.streamType[UserInfo]
Stream into the database
The same logic can be used for UPDATE and DELETE.
val insertStm = sql
.insert(client)
.cols2(t => (t.username, t.age))
.cache
// insert one at a time.
readFileIntoStream("clints.txt")
.map(makeTupleFromLine)
.run(insertStm.asSink)
// insert in chunks of 100 using transaction.
readFileIntoStream("clints.txt")
.map(makeTupleFromLine)
.transduce(insertStm.collect(100))
.run(insertStm.asChunkSink)
Stream type
case class User(id: Int, name: String, age: Int)
case class UserInfo(name: String, age: Int)
sql
.select(oldUser)
.cols2(t => (
t.name,
t.age
))
.all
.orderBy(_.id.asc)
.streamType[UserInfo] // .streamType[UserInfo](1000)
.run(
sql
.insert(user)
.cols2(t => (
t.name,
t.age
))
.cache
.asTypeSink[UserInfo] // .asTypeChunkSink[UserInfo]
)
Execute multiple operations
Do INSERT, UPDATE and DELETE in one transaction.
sql.transaction(
sql.insert(user).cols2(t => (t.username, t.age)).values(("Joe", 25)),
sql.update(user).set(_.age ==> 31).where(_.id === 45),
sql.delete(user).where(_.id === 83)
).run
Execute a list of cached statements
val stm = sql
.delete(user)
.pickWhere1(_.id)
.cache
val statements = (1 to 10).map(id => stm.render(id))
sql.transactionList(Seq(statements)).run
Jsonb field
https://www.postgresql.org/docs/11/functions-json.html
{
"name": "Angela Barton",
"is_active": true,
"company": "Magnafone",
"address": "178 Howard Place, Gulf, Washington, 702",
"latitude": 19.793713,
"longitude": 86.513373,
"tags": ["enim", "aliquip", "qui"],
"residents": {
"name": "Rick",
"age": 31
}
}
class Customer extends Model("customer") {
val data = column[Jsonb]("data")
}
sql
.insert(customer)
.cols1(_.data)
.values(Jsonb(jsonString))
.run
// select
sql
.select(customer)
.cols1(_.data ->> "company")
.where(_.id === 3)
.runHead // "Magnafone"
sql
.select(customer)
.cols1(_.data #>> Seq("residents", "name"))
.where(_.id === 3)
.runHead // "Rick"
sql
.select(customer)
.cols1(_.data -> "tags" ->> 1)
.where(_.id === 3)
.runHead // "aliquip"
sql
.select(customer)
.cols1(_.data -> "residents")
.where(_.id === 3)
.runHead // Jsonb({"name" : "Rick", "age" : 31})
sql
.select(customer)
.cols1(_.data - "residents")
.where(_.id === 3)
.runHead
sql
.select(customer)
.cols1(t => t.data || t.other)
.where(_.id === 3)
.runHead
// update
sql
.update(customer)
.set(_.data += Json.obj("address" -> "Somewhere 12"))
.where(_.id === 3)
.run
sql
.update(customer)
.set(_.data -= "address")
.where(_.id === 3)
.run
sql
.update(customer)
.set(_.data #-= Seq("residents", "age"))
.where(_.id === 3)
.run
Array field
Array fields can be created for all the available types.
class Nums extends Model("demo") {
val id = column[Int]("id")
val numbers = column[Seq[Int]]("numbers")
}
val nums = Model.get[Nums]
for {
id <- sql
.insert(nums)
.cols1(_.numbers)
.values(List(1, 2, 3))
.returning1(_.id)
.run
_ <- sql
.update(nums)
.set(_.numbers += 4)
.where(_.id === id)
.run
numbers <- sql
.select(nums)
.cols1(_.numbers)
.where(_.numbers ? 2)
.run
} yield numbers // List[Vector[Int]]
Unique and sorted
// add element and and make sure it is unique
.set(_.numbers.add(4))
// add list of element and and make sure they are unique
.set(_.numbers.add(List(8, 7, 7, 2)))
// same as add but sorted
.set(_.numbers.addAsc(4))
.set(_.numbers.addDesc(4))
// for jsonb array, a key has to be provided that should be unique and used for sorting
.set(_.numbers.addDesc(jsonObj, "index"))
// cache
.pickSet1(_.numbers.addAsc(Arg))
// to use a list as argument
.pickSet1(_.numbers.addAsc(ArgSeq))
Timestamp, Date, Time
class Demo extends Model("demo") {
val id = column[Int]("id")
val eventTime = column[Time]("event_time")
val eventDate = column[Date]("event_date")
val updatedAt = column[Timestamp]("updated_at")
}
val demo = Model.get[Demo]
sql
.update(demo)
.set(t => Seq(
t.eventTime += Fn.interval(hours = 3, minutes = 10),
t.eventDate += Fn.interval(years = 1, days = 2),
t.updatedAt += Fn.interval(months = 4, hours = 5)
))
.where(_.id === 25)
.run
sql
.select(demo)
.cols3(t => (
t.eventTime.format("MM:HH"),
t.eventDate.format("DD Mon YYYY"),
t.updatedAt.format("DD Mon YYYY MM:HH")
))
.where(_.id === 25)
.runHead
sql
.select(demo)
.cols4(t => (
t.id,
t.eventDate.month,
t.updatedAt.week
t.updatedAt + Fn.interval(days = 10)
))
.where(t => Seq(
t.eventDate.year === 2022,
t.eventDate.quarter === 2
))
.run
Postgres functions
Use postgres functions to modify results.
import kuzminki.api._
import kuzminki.fn._
class Profile extends Model("profile") {
val firstName = column[String]("first_name")
val lastName = column[String]("last_name")
val bigNum = column[BigDecimal]("big_num")
}
val profile = Model.get[Profile]
sql
.select(profile)
.cols3(t => (
Fn.concatWs(" ", t.firstName, t.lastName),
Fn.initcap(t.lastName),
Cast.asString(t.bigNum)
))
.all
.run
Create functions
Create your own function classes.
import kuzminki.fn.StringFn
case class FullName(
title: String,
first: TypeCol[String],
second: TypeCol[String]
) extends StringFn {
val name = "full_name"
val template = s"concat_ws(' ', '$title', %s, %s)"
val cols = Vector(first, second)
}
sql
.select(user)
.cols2(t => (
t.id,
FullName("Mr", t.firstName, t.lastName)
))
.where(_.id === 10)
.runHead
// If you need to have the driver fill in arguments:
case class FullNameParam(
title: String,
first: TypeCol[String],
second: TypeCol[String]
) extends StringParamsFn {
val name = "full_name"
val template = s"concat_ws(' ', ?, %s, %s)"
val cols = Vector(first, second)
val params = Vector(title)
}
Available functions
https://www.postgresql.org/docs/current/functions-string.html
Function |
Column type |
Fn.coalesce(col, default) |
String |
Fn.concat(col, ...) |
String |
Fn.concatWs(glue, col, ...) |
String |
Fn.substr(col, start) |
String |
Fn.substr(col, start, len) |
String |
Fn.trim(col) |
String |
Fn.upper(col) |
String |
Fn.lower(col) |
String |
Fn.initcap(col) |
String |
Fn.round(col) |
BigDecimal |
Fn.roundStr(col) |
BigDecimal |
Cast.asString(col) |
Any |
Cast.asShort(col) |
Any |
Cast.asInt(col) |
Any |
Cast.asLong(col) |
Any |
Cast.asFloat(col) |
Any |
Cast.asDouble(col) |
Any |
Cast.asBigDecimal(col) |
Any |